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ABSTRACT 

In this article, we consider certain systems of derivation algebras related 

to Galois representations attached to fundamental  groups of algebraic 

curves of positive genera and establish some stability property. This is a 

generalization of Ihara 's  result in the case of genus zero. 

0. I n t r o d u c t i o n  

Let C be a non-singular curve of genus g > 1 with one point punctured over the 

rationals Q. For a fixed prime number  l, we have a Galois representation 

(0.0.1) ~C'Pr°-I" Gal(l~l/Q) ___+ Out  7rlpl-o-t{~) = Aut  7rprO-~(C,)/intTrlPrO-t(~,) 

a t tached to the p ro - / fundamen ta l  group of  C = C ×Q 1~. Our  pr imary  subject  
^pro--/ is to determine tile image of Ga l ( t~ /Q)  under ~ c  . For this purpose it is 

useflfl to  consider configuration spaces of points on C and the system of Galois 

representations a t tached to their pro-/ fundamental  groups. Let C (v) be the 

configuration space of ordered r points on C: 

C (r) = C' x .- .  x C \ ( w e a k  diagonal) 
v (0.o.2) 

= {(P1 . . . . .  P,-)l Pi • C, Pi # Pj(i # j ) } ,  
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and consider a sequence of projections 

(0.0.3) . . .  , C (r)  > C ( r - l )  > ' ' -  > C (2) > C (1) = C ,  

where p(~r): C (~) --+ C ( r - l )  is defined by forgetting the r-th point. We consider a 

system of Galois representations 

(0.0.4) •gpro--/ pro--/ 
c(,) : GaI(Q/Q) > Out~, (C(~)) 

which is compatible with (0.0.3). Speaking a little more precisely, we introduce 
certain subgroups Out ~ 7rpr°-l(C '(r)) of Out zrPr°-l(C (r)) which contain the im- 

age of Gal(Q/Q) and which admit homomorphisms ~,~(~): Out ~ rrPr°-l(C '(')) -+ 
pro--/ Out b 7r 1 (C',(~-l) ) induced from p(~').  Then the Galois representations are com- 

patible with these homomorphisms: 'g,}.") pro-/ p, 'o - I  o 9~c(.) = 9~c,(~_1). Hence the image of 
pro--/.  ~c  . Gal(Q/Q) --+ Out 71"Pr°-/(C) is included not only in Out ~ 7rpl"°-t(C ') but 

also in all the images of Out b zrpr°-l(6'(~)). 

In this paper we consider graded Lie algebraization of this representation. The 

study of graded Lie algebraization of this kind of representations was originated 

by Ihara [I1], and is developped in many following works [AK, K, NTs, NTaU] 

etc. The fimdamental group 7r p~°-I (C) is equipped with a central filtration called 

weight filtration, which coincides with the descending central sequence in this 
case. We introduce an induced filtration in Out 7r pr°-l(C) and then in Gal(Q/Q) 

. p r o - /  via We . Taking the associated graded structures, we obtain graded Lie aide- 
^pro-/. braization ~ i e  of ~c  " 

(0.0.5) Lie. ~ C  " ~ C  > Out ~ Gr Hg,1.  

pro--/ Moreover, by considering the graded Lie version of ~c¢~) ' we have a system of 

homomorphisms of graded Lie algebras 

(0.0.6) Lie Out ~ Gr [I(g~ 

whose images are preserved in a sequence of graded Lie algebras 

, g,(~) 
r)  ~ D F i ( r -  1) ----+Out~GrHg,1 )Out Gr..g,1 • o t 

(0.0.7) 
"'" ) Out~ Gr H~2,~ ~ Outb Gr rdt)''g,1 = Outb Gr Hg, 1. 

Here, for a Lie algebra £, Out £ means the outer derivation algebra of £, that 

is, the quotient of the derivation algebra of £ by the Lie ideal consisting of 
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all the inner derivations, and Out b is defined as a certain subalgebra. Also in 

this graded Lie case, the Galois image in Out ~ GrIIg,1 is contained in all the 

images of Out b "~ ~(") urug ,1  there. Hence our interest goes to the determination of 

this subalgebra of Out ~ Gr 119,5. We call this the s t a b l e  d e r i v a t i o n  a l g e b r a  for 

genus g. 

For the sequence (0.0.7), it is known that  all homomorphisms @r): Out ~ Gr N(r) ~g,1 

> Out~GrII~[[ -1) are injective (Ihara-Kaneko [IK], Nakamura-Takao-Ueno 

[NTaU]). In this paper we shall prove the suijectivity of these homomorphisms 

for all r except very small values. 

MAIN THEOREM: For any g >_ 1 and r >_ 4, the homomo11)hism 

~'~/') Outb . . . . .  g,1 > Out~ 

is suzjective (hence bijective). 

The proof is done quite algebraically and it can be formulated as a theorem 

on graded Lie algebras over Z. We work on a graded Lie algebra L: (r) over 
,~ ~(r) 

Z satisfying that  £<)C?z Zl --~ urH~,  1, and a suitable subalgebra /)(g~) of the 

derivation algebra Der £(gr) of £(j') satisfying that  /)(r) (~z Zl ~- Out b Gr 11~'i~" 

The theorem which shall be actually proved is the following. 

MAIN THEOREM: For any g > 1 and r > 4, the homomorphism 

is bijective. 

In the case of the projective line with three points punctured, Ihara [I3] defined 

the stable derivation algebra and proved the stability property. Our main theorem 

of this paper is an extension of this to curves of positive genera, and we shall use 

Ihara 's  result in the most crucial part  of the proof of our main theorem. 

In Section 1 we give the definition of L;(g ~) and ~D9 0") and state our main theorem 

precisely. Section 2 is devoted to the proof of the key proposition. For the 

case of genus one, we try to determine the structure of the stable derivation 

algebra by the actual computation using computers. We deternfine the irreducible 

decomposition of low degree components as 1~[(2, Q)-modules. In Section 3 we 

mention the results of computation. In Section 4 we propose some open problems. 

In the Appendix we summarize Ihara 's  result on genus zero case from [I3] by 

adding some new remarks needed for our discussions in the present paper. 
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1. G r a d e d  Lie  a l g e b r a s  a s s o c i a t e d  w i t h  b r a i d  g r o u p s  o n  a c u r v e  o f  

g e n u s  g 

In this section we shall state basic facts on graded Lie algebras associated with 

braid groups on a curve of genus g based on [NTaU]. 

1.1. The graded Lie algebra £(9 ~) over Z is defined by the following generators 

and relations: 

generators: X~k=X~k ), ]~k=Y/(r) ( l < i _ < g , l < k < r ) ,  

ZJk  : ~ j k  7(~) (0 _ < j _ < r, 1 < k < r); 

deg Xik = deg ]~ik = 1, deg Zjk = 2; grading: 

relations: 

(1.1.1) Z k k = 0 ,  Z j k = Z k j  (l _< j, k < r), 

(1.1.2) E [ X i k ,  Yik] + Zjk = 0 (1 < k < r), 
i~--i j = 0  

(1.1.3) [Zjk, Zj,k,] = 0 ({j, k} A {j', k'} = O), 

(1.1.4) [Xik, Zjl] = [Yik, Zjl] = 0 (k # j , / ) ,  

(1.1.5) [X~k, Xjl] = [Yik, ~'~] = 0 (k ~ /), 

(1.1.6) [Xik, Yjl] = 0 (i # j ,  k • / ) ,  

(1.1.7) [Xik,Yil] = Zkl (k ~ l). 

(We sometimes omit superscripts (r) when no confusion occurs.) When tensored 

with Zl, £(r) coincides with Gr II~'i~ in [NTaU]. The homogeneous component of 

degree m is denoted by grm £(~). The symmetric group ®~ acts on £(gr) by permu- 

tation of indices; a(Xik)  = X~o(k), ~r(Yik) = }}o(k), O'(Zjk)  ~- Za ( j )a ( k ) ,  o ' (Zok)  = 

Zoo(k). 
For r _ 2, £~) is a successive extension of free Lie algebras as observed later. 
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We also put 

(1.1.8) r(~) = (Xik, Yik, Zjk, Zokl 1 < j, k < l), ~ g , < l  

(1.1.9) £(9 ~)° = (Zjk t 0 ~__ j <_ r, 1 < k < r}, 

and 

(1.1.10) r(")° 
• = (Z kl j, k ¢ l}. 

1.2. For 1 < k < 'r, let A[ (r) be the subalgebra of £(r) generated by Xik, Yik _ _ ] g  

and Zjk (1 < i < g,0 < j < r). Each of them has one defining relation 
P ~/9_l[Xik, ](~k ] + ~j=oZjk = 0 and is free of rank 2g + r; Xik,}~k (1 < i < g) 

and Zjk (1 < j < r) form a free generating system. Moreover, ~'f(*') is a Lie ideal 

of £~r). In fact,, Ag, F ) coincides with the kernel of the following "forgetting the 
r-th string" homomorphism: 

(1.2.1) p<") = p~r): £~r) ___> f ( , - , )  

X~; )' V(')'ik '~jkT(') , ) "'ikV("-'),'ikV("-l), Z~2 - ' ) ,  , (1 _< i _< g;j ,k ~ r), 

X}: ),}'i~: ") Zg ~ ) ~ 0  ( l < i < g ; 0 < j < r - 1 ) ,  

and N~. (') is the image of Af ( ')  under a ¢ G~ with a(r)  k. Hence we have an k ~- 
exact sequence of graded Lie algebras 

(r) P!-r{ .,, (r-- 1) (1.2.2) 0 > N,! ~') > L a ----*~g > 0. 

1.3. We have also the "inserting the r-th string" homomorphism 

(1.3.1) i = i(,--1): £~r-1) ) £(9,') 

~k-~;--l) t i ~ ' - - i )  7 ( r - - l )  ~(r) V(") Z(') ( l < i <  l< j , k< _  1), 
, , ~ j l , :  ~ ) " i t ,  , * i k  , ~ j k  _ _ g ;  _ ' r -  

Z~[, - ' ) ,  >Z~, )+Zo(~, ) ( l < k < r - 1 ) ,  

which is a splitting homomorphism of p!."). Any element in the image 
i ( r - 1 ) {  l ' ( r - 1 ) ]  ~ g  j commutes with 7(~) Conversely we have ~0  P • 

LEMMA 1.4: The centralizer Cc~,.)(Z(o; )) of Z(")~or in t;~ ~) is 

(4 ; ) )  = r(") + (4 ; ) / .  9 ~ g , < r  
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Proof: Put C = C£(9,)(Z0(rr )) and C' = f(r) (r) ~g,<r O (Z~r). Then we have 

(1.4.1) o > ~ r  (') • G ") p~r)> G ' - l )  > o 

I t J 
o > (z~;)) > , - p?) (c )  > o 

7 J 
0 > (z0~;)) > c '  > p}:r)(c') > 0. 

Since p}5 ) (C)  = £(gr-~), the inclusions in the right column are equalities, hence 
C£(g~) (Zo (r)) : C'. I 

By this lemma, the homomorphism / ( r - i ) :  /~(r-1) _+ /~(gr) is characterized as 

the unique (modulo (Z(:)} in degree two) splitting homomorphism of p}r) whose 
image commutes with 7(r) 

~ 0 r  ° 

1.5. A linear endomorphism D of £(r) is called a derivation if it satisfies the 
Leibniz rule D([X, Y]) = [D(X), Y] + [X, D(Y)] for any X, Y e £(r). The set 
Der £(r) of all derivations of £~r) forms a Lie algebra with respect to the bracket 
[D, D ~] = D o D ~ - D ~ o D. Now we define the braid- l ike  de r iva t ion  a lgebra  
of £(r): 

(1.5.1) Der b,g~r) = { D  E Der/:0") 

At(r) (1 < k < r) ] 

(r) ru(r) 45)] / D ( Z  h, ) : ~ j ~ ,  

(3U¢~.) e £~")°, 0 _< j < r, 1 < k < r) 

A braid-like derivation D is called of  deg ree  m if D(gr i £~r)) C gr i+' '  £(gr). 
We denote the submodule consisting of all the braid-like derivations of degree 
m by grm DeP £(r). Then, since £~r) is generated by finitely many homoge- 
neous elements, Der ~/:(9 r) admits a decomposition into a direct sum of homo- 
geneous components; Der ~ £~") = (~m~=i grm Der ~ £(gr). The set Int, C~ r) of all 

i nne r  de r iva t ions  Int(V) = [V, ,] (V E g(9 r)) forms a homogeneous Lie ideal of 

Der £(gr). The quotient algebra 

Out ~ £(9r) = (Der ~ £(gr) + lilt £~r))/Int £(r) 
(1.5.2) 

= Der b £~r)/(Der b t;(gr) A Int £(r)) 

is called the o u t e r  bra id- l ike  de r iva t ion  algebra .  We shall show later that 
DeP £ 7  ) A Int £(r) = Int £~r)o. 
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Remark 1.6: This definition is slightly modified from that of [NTaU]. We require 

that r# ~) should be taken in £~r)o. Owing to Matsumoto's result [M], this is a ~jk  

reasonable restriction when we are interested in Galois representation. As a 
result of this definition, if D E Der £(91) is braid-like then D(Zo(l )) -- 0 because 

= <zoT>. 

1.7. The "forgeting the r-th string" homomorphism p(/): £(g") - +  £(r-1) 
naturally induces homomorphisms Der b £(gr) --~ Der b £(gr-,) and Out b £(~/ __+ 

Out u L;~ ~-1) since the kernel Aft 0") of p}r)is preserved by Der ~ L;~ ~). We denote 

these homomorphisms by the same symbol .~'¥("). We have the following remark- 
able property called "filtered injeetivity" (Nakamura-Takao-Ueno [NTaU], see 
also a preceding work of Ihara-Kaneko [IK]). 

THEORmvl 1.8 (Nakamura-Takao-Ueno [NTaU] Theorem 4.3): For any g >- 1 
and r >_ 2, the homomorphism 

o. t ,  > o . t ,  

is injective. 

The proof of this theorem seems complicated. The author hopes that an easier 
proof will be tbund. 

1.9. Put  

£ (1.9.1) W~, = W~ '') 7(") = -j~. +Z~[. ) ( l < / , ' < r )  
j = k + l  

(in particular, It~. = Vv;! ") (,'/ = Z~,. ). A braid-like derivation D E Der b L; u') is said g 

to be W - n o r m a l i z e d  if D(W~ r)) = 0 for 1 < k < r. Denote by Der* L;(g r) the 

subalgebra consisting of all W-normalized derivations: 

(1.9.2) Der* £~") = {D C Der b £(g")} D(}I~ r)) = 0 (1 < k < r)}. 

The following proposition is an analogue of "y-normalization" ([I3] §2 

Proposition 1). 

PROPOSITION 1.10: 

(1) All u,4~') (1 < k < r) are mutually commutative. 

(2) C c : " ) ( { W ~ r ) [ l < k < r } )  =f(~) ( ")1 @ ll/~ 1 k < r > .  Inpartieular, if 

V ff £(j') comnnzteswithalll~V(~)'s, then lz C {V~(:")ll < k < r >  v~ k 
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(3) I f  D 6 Der b £(~) satisfies D(Wf f  )) CAf  (~) and D ( W  (r)) = O, then D(W~(~)) 
: O. Inparticular, i f n ( w  (~)) • Af (~) fora111 < k < r - 1  a n d D ( W  (~)) : O, 
then D is W-normalized. 

(4) For any D • Der ~ £(g~), there exists V • £&)° such that D - Int(V) • 

Der* £(g~). The element V • £(g~)° is unique modulo (Int(Wff))l 1 < k < r). 
(5) Der ~ £(r)N Int £(~) = int  £(~)o 

Proof: (1) For l < k < l < _ r ,  

g k-1 ~ .  ] 
rw(r) X--,f y(~) y(r)  1 Z(r) ~(r) 

i=1 j= l  /=/+1 
= 0 .  

(2) Induction on r. When l = r, it follows from Lemma 1.4. In particular, it 

holds when r = 1 = 1. When I < r, put  C~ ~) = Cc(g~)({Wff)l/ _< k < r}) and 
c~r)l = f.(r) ~g,<l ® (Wff) ] 1 < k < r). Then we have a commutat ive diagram 

0 ) ]~(r) • j[~(gr) P(r) > ~[~(r--1) ) 0 

o - <ZOO> , c} ~) , p~)(c} ")) , o 

[ [ 
o - < z ~ ? /  . c }~ )  ' . ~,~(~),,~(",~ , . o. 

where each row is exact. Since p~ ( W ~ )  = " k  (1 < k < r -  1 ) , :  0 (k = r), 
it holds tha t  p(r)(Cff)) C Cff  - 0  and tha t  p(r)(C~r)') = C[ r-l)'. By assumption 

of induction we have Cff - n  = C~ ~-1)'. Hence, by the diagram above, we obtain 

p(/)(Cff )) = p(~)(C[ ")') and Cff ) = C~ ~-1). In particular, for l = 1, we have 

Clr)= <Wff)l 1 < k < r>. 
(3) Since W~ '~) and W,! r) commutes with each other, we have 

(,) (•) [D(Wff)), O : D([W~ , Wr ]): Wff)]. 

Hence D(Wf f  )) belongs to C:¢~,)(W(~ ")) = (W,,!')). Since D(Wff  )) has its homo- 

geneous components only in degree greater than two, it follows tha t  D(Wff  )) = 0. 

(4) Induction on r. Let D E Der b £~") be a braid-like derivation. When r = 1, 

it is already normalized because D(W~ 1)) = D(Z~11 )) = 0 (Remark 1.6). Let 

r > 2. Since D(Wff  )) = D(Z~:: )) = [U~:), Z0(~. )] with U0(: ) e £(9 ~)°, we can assume 
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tha t  D(W~ 0")) = 0 without  loss of generality by replacing D with D - In t (U~: ) ) .  

Let D'  = ~,(f)(D) be the induced derivation on £(g~-1). By the assumption 
r(r-1)° D' Der* £~.-1). of induction, there exist V' E .-.g such tha t  - I n t ( l / " )  C 

Put  17 = i ( ~ - ' ) ( V  ') C C£(g,)o(VG! ~)) and D* = D -  Int(V). Then D * ( W  (~)) = 

D(Vd ( ' ) ) -  IV, W,! ~)] = 0, and D * ( W  (~)) E .af~ *') for 1 < k _< r -  1 because 
p(f) (D*(W~r)))  = (D' - Int(V'))(W~ ' -1))  = 0. By (3) we have D* c Der* L: (~). 

Uniqueness follows from (2). 

(5) Suppose that  U E £(") satisfies Int(U) E Der b L: (~). Then, by (4), there 

exist V E L: (~)° such tha t  Int(U) - Int(V) C Der* L:~ ~). Then U - V commutes 

with w(~)"k (1 < . . . .  k < .r). By (2), U - V  belongs to (W~ ~)] 1 < k < r). Hence 

U E £(9 ~)°. I 

By this proposition, we have 

Out b L:~,.) = Der b £(gr)/(Der ~ L:(g~)n Int L:(g ~) ) = Der ~ £~") / In t  L:(g ~)° 
(1.10.1) 

_~ De,'* £(r) /{int(WO'))]  1 < k  < 'r}. 

w(~- l )  (1 < k < r - 1 ) ,=  0 (k = r), the natural  1.11. Since p(r")(W~ ")) : "'k - - 
homomorphism Der ~ £(j') -+ Der ~ L:(g ~-1) defines 

(1.11.1) Der* £~)  --+ Der* L:~ ~-1). 

The kernel of this morphism is (Int(W(~))) since Outb£(9~) --+ Out'Z:7 is 

injective. In particular, it is injective on the components of degree greater than  

two. 

1.12. We denote by /9(~ ~) the subalgebra of Der* L: (r) consisting of all W- 
normalized derivations which are @,.-invariant modulo inner derivations. By 

(1.11.1) we have a sequence of homomorphisms 

(1.12.1) . . .  _____} ~')<r)g ) . . .  ) T )(3) ----+ T) (2) - - -+  "D ( 1 ) - -  Der* £(g'), 

which are injective up to one-dimensinal kernels in degree two. A derivation 

D E /)(~) is said to be s t a b l e  if it lies in the image of D (~') for any r '  > r. 

In other words, a stable derivation is a derivation of £(g~) which can be lifted 

to an element of D (r') for any r '  >_ r. Our interest is the determination of 

the subalgebra consisting of all the stable derivations the s t a b l e  d e r i v a t i o n  

a lgeb ra .  

Now we shall point out a remarkable trick on O,.-invariance of W-normalized 

derivations, whose proof depends essentially on Theorem 1.8 (filtered injectivity 

= [NTaU] Theorem 4.3). 



230 H. T S U N O G A I  Isr. J. Math .  

PROPOSITION 1.13: For r _> 3, the action of  ~ on Out  ~ L;~ ') is trivial, that 

is, every element o l D e r  ~ £~) is automatically ®~-invariant modulo inner deriva- 

tions. 

Proof: It suffices to show tha t  every transposit ion acts trivially on 

Out  b £(g~). Since any two transposit ions are mutual ly conjugate,  it suffices only 

to see the action of t ransposit ion a = (r - 1 r) .  Since the two-step composite 

pO') o Pr-l~(r-1): /2(~) __+ £(~-2) of the string-forgetting maps commutes  with a,  also 

the induced homomorphism ~/,(r) o g,(~_-~l): Out  b Z:~,-) -+ Out  b £~,--2) commutes  

with the action of a. Then  the triviali ty of the action of a on Out  ~ £(~) follows 

from the injectivity of ~/,(r) o ~/,}.r__ll) (Theorem 1.8) | 

1.14. To consider the stabili ty in our case of higher genera, we want to combine 

our si tuat ion with tim study of the case of genus zero. The center C(£~ r)°) of £(g~)o 
v" Z (r) <) W~ . have a is generated by z-,o<j<k<_~- j~, = ~l<~:<~. We natural  isomorphism 

(1.14.1) (r)o (r)o ~ (r+2) ~ /C(Cg )----~ 

57(r) . . ( r+2) mapping ~jk to :t.'j+ 1 ,k+l .  It sends the component  of degree 2m to tha t  of degree 

m and maps w( r ) ' s  t o  y(r+2) ~. k+l up to sign. See the Appendix for nota t ion in the 

case of genus zero. 

L E M M A  1 . 1 5 :  

(1) Let D c T ~(2). Then the restriction Do on L: c2)° can be identified with an 

element of  Out  ~ gl (4) fixed by the action of (2 3) E ®4 via (1.14.1). 

(2) Let r >_ 3 and D E T ~(~). Then the restriction Do on £(g~)O can be identified 

with an element olD(0 ~+2) via (1.14.1). 

Proof: The conditions on braid-likeness and normalizat ion are satisfied by 

definition. The Gr+2-invariance (up to an inner derivation) is the only mat-  

ter to  check. If r = 2, D is invariant under a t ransposit ion (1 2). Hence Do is 

invariant under a t ransposit ion (2 3). If r = 3, Do is automatical ly  ~a-invariant.  

Since D is invariant under G3, in part icular  under a transposit ion, Do is ®~- 

invariant. If r > 4, Do is automatical ly  ®r+2-invariant (see Proposi t ion A.10). 
| 

The following proposit ion is the key proposit ion to prove our main theorem. 

The  proof  is given in the next  section. 
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PROPOSITION 1.16: Le t  D = D (2) E "D~ 2) and iden t i fy  the  res tr ic t ion Do = D~ 2) 

on £(9 2)0 wi th  an e l emen t  o f  Out  b gl (4). For r >_ 3, i f  D;  2) can be l i f ted to 

~(r+2) then D (2) is stable,  tha t  is, D (2) can be l i f ted to an element D(0 r) 6 ~-o , 

D(") (5 :D(g "). 

Our  main theoreln follows from the proposit ion above combined with Ihara 's  

result [I3] for the stabili ty in the case of genus zero. 

~,(3) then D (1) is THEOREM 1.17: I f  D = D O) E ~D (1) can be l i f ted to D (3) C t O , 

stable.  Therefore  we have  

~-/-);r) ~ ) . . .  ~)T)(4)~+V(3)g g ~ -D(2) ,__+ T)(1). 

In o ther  words, D(g 3) is tile s t a b l e  d e r i v a t i o n  a l g e b r a  for genus g. 

Proof." By Lemma 1.15 the restrict ion of D (a) on g(93)° defines all element of 

~D(o 5). Since any element of T~(05) can be lifted in T~(0 ''+2) for all r > 3 ([I3]), tile 

conclusion follows from the proposit ion above, m 

COROLLARY 1.18: / f D  = D (2) E /)(2) is 0-map on L;~ 2)° (i.e., r; (2) jk = 0 for all 

j ,  k ), then D is stable.  

2. P r o o f  o f  t h e  k e y  p r o p o s i t i o n  

In this section we shall give a proof of Proposi t ion 1.16. 
For a derivation D = D (1) e / ) (g l )pu t  ~ilq(1) = D(1)(X}I)) ,Ti(1)  = D(])(})~I)). 

_ _ Vt') }J~) (1 < j < g), for 1 < i < g. Since £(gl) is a free Lie algebra on -- j l  , - - 

S[1 ~) and T/(1 I) are Lie polynonfials of 2g variables. In this sense, we employ 
v(1) ¥41) (1 < j < g) as the nota t ion for Lie I)olynomials of 2g variables - ' j l  , - j l  - - 

S(1) @.{y( ')  V(1) ,~i(Xl,  ) y l , ) )  X~l) = / v (1 )  v ( l ) )  il =: "-,~"'-1 , - - I  ),Ti(l 1) =: where ' ' \ ' ~ 1 l  , ' ' ' ~ ' ~ 9 1  

and y~l)  = (}~(]) . . . . .  ]~(])) are multi-variables. For lnulti-variables X~£ '') = 

v("') Y(")~ and Y[,") ~'(") q / X  (~) y ( " h  " ' l k  . . . . .  g k  J = (~'1(~, ') ) we also denote by ~ k , k J 
' ' " " " ' ~ g k  ' 

(resp. Ti(X[£ r), y [ r ) ) )  tile element of £(g") obtained by replacing xJll) 's and }}())'s 

¥(~)'s and }j~'.')'s. Since D is normalized to (1 _< j _< g) in ~ilq'(1) (resp. T/I ~)) with . jk '- " 

be D(Z} 1)) = 0, we have 

g 

(2.0.1) ~ -" ( r s  (1) 
L il ' 

i=1 
+ T,(I')])= o. 
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LEMMA 2.1: Assume that D (n can be lifted to D (2) 6 7)(92) and put O (2)( Y(2}~ k " * i k  ] 
q(2) D(2) 42) T/(~ ) (k 1,2), D (2) (2) rrr(2) Z(Zh (2) r(2)o : :  ~ /k  , ( % )  = :  = ( z ] k )  = :  ~ k ,  j k ~  ( v ] k  • -~9 , 

(j, k) = (0, 1), (0, 2), (1, 2)). Then the following equations hold: 

S(2) ~ ry(2) v(2)~ 

T~) ~/'z(2) v(2)~ 

s(~) ¢~Y(~) v(~) [Vo?,X}~)], i2 =~'~t ,"~2 ' - - 2  ) '4- 
7,/(2) = Ti(X~2)y~2)) + [U~)y(2)  l 

i2 1, 

Vo? : o ,  
Vo(~ ) = U } [  ) - a ( U ~  )) ( a =  (12) • G2). 

Proof" We have D (2) (Z(22)) = 0 by the condition of W-normalization. Operating 

D (2) on L[X(2), Z ( 2 ) ] i l  02 J = 0, we have t[S(2), Z ( 2 ) ] i l  02 J = 0. From this a n d  p(2)tS(2)~2 ~ it ] - -  

S}~ ), it follows tha t  S}12) = i ( n ( S ~  )) .¢.~w(2) v ( 2 h  Similarly we get T~(~ ) 

T(X~2),Y[2)). Then consider a = (1 2)-invariance modulo inner derivations. 

Since a o D (2) o a-t(Z0(~ )) = [a(U(o~)),Z(o~)], a o D(2)o a -1 must coincide with 
-(2) D (2) +Int(cr(U~l )). The rest follows from this. Notice tha t  U(~) = U12rr(2) --O'l, U12zrr(2)') 

implies a(U(~ )) = -U(~ ). II 

Let Do (2) be the restriction of D (2) on/2 (2)°. We assume tha t  D;  2) can be exten- 
(r) (r) [r;(r) (r) {1, . , r }  U d e d t o D ~  r) on£~r)° .  We put  D 0 ( Z ] k ) =  t~ j k ,Z]k]  f o r j  • .. {0} 

and k = 1 . . . . .  r. By ®r-symmetry  of D(0 r), there is a 1-cocycle a(r): ®r -+ £(r)o 

satisfying (to D (~) o n - '  = D~ r) +Int(a(V)((r)) for a • Gr. We desire to construct 
D(r) •/)(gr) which lifts D (2) and whose restriction on £(gr)O coincides with D (~). 

CLAIM 2.2: The desired derivation D (r) • 7) (r) is given by the following assign- 

ment: 

(2.2.1) x};), 
(2.2.2) v ( r )  

(2.2.3) _j~(r) , 

, %  ) [a(r)(T~),X}2)], 
) ~ i k  : =  

> r(~. -) := T~(X2~) y ( r ) ) _  [a(r)(Tk), V(r)l 

>D o(r) (Z]k(~)) = rU(r) Z]k] .(r) [ j k '  

Here rk is any element of @r with Tk(1) = k and ~ikq(r) and T~2 ) do not depend on 

the choice of rk. 

Proof: We begin with showing the following lemma which assures tha t  the 

elements .q(r) and T}~ ) in the definition of D (r) do not depend on the choice of  

rk. 
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LEMMA 2.3: I f  o • ®v satisfies" o(1) = 1, then aO+)(o) commutes with W~ ~), 
f(v)o (r) hence belongs to ++,>_m := (Z]A+ l J, k > 2). Therefore it commutes also with X}[ ) 

and  ~ i?  > (i = t . . . . .  + ) .  

Proo~ If a(1)  = 1, cr fixes W~ r). The element a(V)(a) satisfies, by definition, 
D~ ,`) = o o D~ ,.) o o - I  + Int(a(v)(o)).  Therefore 

[a(V)(o) ,W~V)]=D(oV)(w~v))-aoD(o v) o a- ' (W}V))  = 0. I 

We shall prove this claim by induction on r. The case r = 2 is trivial. The 
)FL~,-)o : r ( r -1 )  ° homomorphism p(V £(v)o -~ ~g induces a derivation 

D(0r-t): r (v- t )o  f,(v- 1)o D(o,). "~v --+ ~9 from By the assumption of induction, there is 
/ , ( r - - t ) o  ~ ( r - - 1 ) o  a derivation D(V-1): ,~g -~ .q of the above form which extends D(0 v-l) .  

LEMMA 2.4: 

(i) When we identify ®v- t  with the stabilizer of  the letter r in ®r, we have 
p(f)(a(V)(a)) = a(V-')(a) for o e ®v- l .  

(ii) When { j , k }  N {r, 0} = O, we have S}; ) = ,(S};-1)),T[~. ") = t(ri(; "-1)) and 
u~;) : , < ; - 1 ) )  

Vroo~ (i) We have D(0 v) = a o D(0r)o 0 -1 - I n t ( a f f ) ( o ) ) .  Since o • ® r - t  
/ , ( v - - l )  commutes  with the projection p!Y): L;~ r) -+ ~g , we obtain an equation 

D ~  v - l )  = o" o D ;  v - l )  o 0 - - 1  - Int(p}Y)(a(V)(o))) 

between induced derivations on £(~-1). This equation characterizes a(V-1)(a). 
(ii) By definition, we have ~ik~(r) = $~(X~I,- ), y(V))k -[a(r)(wk),  X}2 )] (rk = (1 k)). 

Since k ¢ r, vk belongs to ~ v - l -  Hence, by (i), it follows that  p}J')(S (r)~ \ ik ] 
Si(X~, ' - I )  y~r -1) )  _ [a(r_l)(Wk)+ X};- l ) ]  = S~;-I) .  On the other hand, +(v) : ~ik com- 
mutes with 7(v) because $ i (Xg "), 09 7(r) and Y~. ) colnnmtes with -0v 

[aCV) (vk), +OvT(+')lJ : Dgr) (Z~; >) - 0 o D(o ~) o a-'(Z(o; )) = O. 

These two properties characterize t (S[~-l))  when it is of degree greater than two. 
The proof  for Ti(; ") is quite similar. II 

LEMMA 2.5: For any o E @v, we have 

(2.5.1) 

(2.5.2) 

(2.5.3) 

(2.5.4) 

o(S (,-) S(v) 
T(v) y(v) ], 

~(u~2) = u ~ + ~(~>(~), ¢(j)~(k) 

~(ugg )) = u(~) + a(~)(~). 
Ocqk) 
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Proof: Since D~ ~) = c~oD(o r) O 0  " - 1  +Int(a(")(a)),  the assertions on U-coordinates 
follow. For S-coordinates we have 

a(Sik(~))= a(Si(X~) ,  Y('))k -[a(~)(rk),X};)]) 
= .¢(Y(~) v(~) ~ _ [aa(~)(vk), X~(') ] 

= s } G  ) + [aU)(~o(~)),X~;)]- [ a U ) ( ~ )  - a(")(~),X~;)]. 

Since Tz(k)(1) = aTk(1) = a(k), we have [a(~)(To(k)),X~k )] = [a(r)(c~rk), Xik "(')], 
09 ~(~) [a(r)(a),X~:)(k)]. The proof for T-coordinates is quite hence (r(Sik ) = + 

similar. 

Our proof of Claim 2.2 is done by checking that D (~) preserves all the defining 

relations of £(g~). We have nothing to do with (1.1.1) and (1.1.3) because of the 

well-definedness of D(0 ~). 

To show that D (r) preserves the relation (1.1.2) 

g r 

(1.1.2) /_~L -ikV"r: '<~u'), ~ r ) l  + E Z J 2 )  = 0 (1 < k < r), 
i=1 j=O 

we need to show 

(2.5.5) v','r:,,~(~) TU)~ + rcU') y:U)~) + V"ru(") Z~(") 1 O. 
i = t  j = 0  

When k = 1, it holds since 

g 
~~','r:,,~(~) ,-r'¢")1 rcU) y~,')]) 

\L '~ i l  ' ~ i l  J -[- t ~ i l  
i=1 

g 
~-"trx (r) T~X (') y(")~l r.¢~y(r) vO')~ v(r)l~ 

= ff_.~\t i l  ~ *\  1 , 1 ]J -}- t v ~ " l  , ~ 1  ] ~ i l  J] 
i = l  

= t(r-1) o . . .o t (1 ) / 'K-" ( rXO)  ,-r(yO) y(1)~l (1) (1) (1) 
/ / _ . ~ L "  i l  ' ' ~ \ ' " 1  ' 1 lJ q - [ S i ( x l  , Y 1  ) , g / 1  ]) 
- i=1 

- -0  

and 
r r 

/ ~ t ~  jl~--~[TY(r) ' ~jl~(r)]J = D o f f ) ( E  __Z}l(r) ) = ~'O/~(r)~,"{'/I/'(r) h l  ] ~--~ O. 

j---O j=O 
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For genera l  k, t ak ing  cr C @,. w i t h  or(k) = 1, 

( g 71 1 + + ~ Z~ l )  ~--,(r Vb ) (r) [q(r) y( r ) l )  ~--',ru(r) (,-) O" 
\ i : l  j=O 

g 

= V ' ( r v ( " ) , T } ; )  + [a(")(~),<()]]  + ~ , ,  + t" it  
i=1 

/. 

V ' r u ( , ' )  (,-) ~ 7 ( , ) 1  
q - / _ . ~ t  j l  q - a .  ( , , ] , Z ~ j l  j 

j = o  

g v 

= X ,  1, ]-}- k i l  ' i]. ] @ ~ . ~ L ~ j l  ' ~ j l  J 
• i=1 j=O 

£ + lair'u), E[X};', <~)] + z]?l 
i=1 j = 0  

= 0 .  

For the  re la t ion  (1.1.4)  

(1.1.4) rv(r) ~U)I rrU) z]~)]=0 ( k ¢ j ,  1), 
L"~ih " ' ~ j l  J = t * i k  ' 

we need  to  s h o w  

¢2.~.6) [s};), <?1 + [<2, [u)?, zJ?]]: o, 
(2.5.7)  fT (~) Z <)1 ru (r) (~) L ~k , j~ J + [ } ; ~ , n  0.  

Here we shal l  s h o w  the  former  one.  T h e  lat ter  is qui te  s imilar.  W e  treat  the  

cases  j = 0 and j = 1 . . . . .  r separate ly .  If ( j , k , l )  = (0 ,1 ,  r) ,  it ho lds  s ince  
___: 7 0 0  [TT(r) ~ ( r )  l ~iq(r)l S i ( x ~ r ) ,  Y ~  r)) a n d  ~o,,  c m m n u t e  w i t h  e a c h  o t h e r  a n d  s ince  L~0r , ~0,- J = 

D0(r) (Zo, .(r)) = D(or)(W,!r)) = 0. W h e n  j = 0 and k,l are general ,  t a k i n g  a C G,. 

w i t h  a ( k )  -- 1, a(1) = r, 

, r r ( " )  / " )  (r) ,.([s~,~) z]; )] + L. . ,~ ,  [4,, , z], ]) 
[q,(r) [aO.) (~)  ' X~[)] ,  Z(;)]  + [X~[),  [U~rr)+ a( ,-)(a)  ' Zo(;)]] 

---- t ~ i l  -l- 

Is}; )  (~) = Zo~ ] + [ < ?  [ug7 ), Zo(;)]] + [.(n (~), [x~;t  zg;)]] 
- - - -0.  

If (j,  k, l) = ('r - 1, 1, r) (no t i ce  that  r - 1 # 1 b e c a u s e  r >_ 3),  first we  observe  
t h a t  0 = n ( r ) ( l iV ( r )  "~ --- D ( r ) f z  (r) -LZ(r)  "1 rifT(r) g ( r )  ]~_[irT(r) ~ ( r )  ] 

0 \ ' ' v - - l /  0 \ v-- l ,r  ~ O,r ' - - l )  = k ~ r - t , r ~ r - - t , r J ~ t ~ ' O , r - - t ~ O , r - - l J "  

U s i n g  this  and  the  e q u a t i o n  for j = O, we  have  

[x.};') ~ . u )  (,) ,~,._,,,., z ; _ , , j  = - [x l ; ) ,~u u) (") , L o , ~ - 1 ,  Z o , ~ _ d ]  

7 (r) I = O. = ~,rd~), z (")o,,._,j~= [s,(x~ ~) , Y ~ ) ) , - o , , . - .  



236 H. TSUNOGAI  Isr. J. Math. 

The equation follows from this and that  Lq(r) (r) rS (X(r) y(r)~ (~) k~il , Z ; - 1 , r ]  ---- [ z\ 1 , 1 1, Z ; -1 , r ]  = 
O. When j # 0 and k , l  are general, taking a • ®~ with a ( j )  = r - 1 , a ( k )  = 
1, a( l )  = r, 

(~) Z(r)l r y(~) rn(~) (r) ~([s~k,  j~ ~ + v-~k , ~jz  , z]~ ]) 

= t~ilr~(~) + [a(r) (a), X}l)], Z~?i,~ ] + rt..il v(~) ,t~rr r(~)l,~ + a(~)(a),  Z (~)~_,,~,j]l 

- re(~) (~) r v  (~) rrr(~) (") [a (~)(a), [X}; "), <) - -  [v i i  ' Z r - l , r ]  + L"~il , W r - l , r ,  Z r - l , r ] ]  ~- Z ; - x , r ] ]  

= 0 .  

For the relation (1.1.5) 

(1.1.s) [x~k, xj~] = [~k,  ~9] = o 

we need to show that  

(2.5.8) 

(2.5.0) 

(k # O, 

ry(r) q(r)l = 

= o. [T(/), I']~ r)] + L*./,k , 

Here again we shall show only the former. If (k, l) = (1, 2), we have 

[d")  vO')1 rXO') S~)] =~(r-1)(r¢( '-1) v("-1)i - = v i i  ' " ' j 2  I + t  i l  ' kK-'il ' " ' j 2  ] - t - [ . 3 ( ;T -1 ) ,SJ ;  1)1) 0 

by the assumption of induction (notice that  r > 2). For general k and l, taking 
cr • O,. with a(k)  = 1, a(l)  = 2, 

~,~ou) ,-u), [x}~) u) ~tJik,"j~ J+  , s},  ]) 
[X (r) q(~) = [S}T ) 2r" [a(r)((T) ,X}l)]~"3~; )] "~ L i l  , ~ j 2  j-  [a ( r ) (~) ,X} ; ) ] ]  

[q(r)  h,(r)l [ y ( r )  @ r ) l  
= t~ i l  ,"  j2 J -~- V~il  ' ~ j 2  ] ~- [a(r)((T),[X}~'),"3(J;)]] O. 

For the relation (1.1.6) 

(1.1.6) [Xik, ~)t] = 0 (i # j ,  k # l), 

we need to show that  

(2.5.10) L~.ikrdr), }y, "(~)] + [X[Z) ,T;[  )] = O. 

If (k, l) = (1, 2), we have 

[X (r) T (r)] t ( r - 1 ) ( [ S } ; - 1 ) , } ' ) ( r - ' ) ]  ~-[X};'-I),T;:-I)])= 0 [s};), G ) l  + . = 
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by the assumption of induction (notice tha t  r > 2). For general k and l, taking 

C ®~ with a(k)  = 1, s(1) = 2, 

~([S~[L-(") rv(") (") 

= [SI~ ") + [a(")(c0, X[/')], }5(~') ] + [X~;'), T(~ ") + [a0")(a), 1~;(~)]] 

--[s(r)--t iS ' }-(r)]j2 j ~_ t .rv(,'< T ( ~ ) I .  y , , +  [o,(")(.), [.V}[), ~')(~')]] = o .  

For the relation (1.1.7) 

(1.1.7) [Xik, Yi~] = Zkt (k # l), 

we need to show tha t  

(2.5.11) [S(") y (  ")] rv(")  T(r)l r.(") 7(r)1 
it: it J q -  t" ~it" ' * i l  J = t ~ k l  ~ ~ k l  J" 

If (k, l) = (1, 2), we have 

<: ]-[u~.;), z}; )1 
__-- t ( r - -1)( [Sl l - -1)} .~r- -1) ]  q_ [ X } [ - 1 ) T : 2 - - 1 ) ] _  [ U } 2 - l ) Z ; , ; - 1 ) ] )  

= 0  

by the assumption of induction (notice tha t  r > 2). For general k and 1, taking 

rr E ®r with a(k) = 1, c*(1) = 2, 

~ ( [ s J ; i ) - ( " )  rv(")  (") ~ ,, ] + , - - , k ,  < ,  ] - [u~7 ), z,~, (')]) 
- re ( " )  ra(")(~) y(") l  }-(;)~ - - t~ i l  q-t  ' "  i l  D i2 J -}- [X} ;  "),T~2 ")q- [°(r)(° ' )  ,}';'~r)]] 

- [u~,; ) + 0 ( " ) ( . ) ,  zl . ;  )1 
--Lq (r) %'(")1 rv  (r) ~(")1 ru (r) e l ; ) ]  + [a0")(.), rv(r) v ( ' ) ]  _ Z~;)] = 0. 
- - t ~ i l  ~ * i 2  J q -  L"~' i l  ' " t i 2  J - -  t 52 ~ t ' ' i l  ' ' i 2  J 

Thus we have confirmed all the relations to examine. 

3. C o m p u t a t i o n  for genus  one  

Ill this section we shall present a result of actual computa t ion  in the case of genus 

o n e .  

3.1. For the case of genus one we should consider a "superfluous" symmet ry  

of Galois action as introduced in Nakamura-Takao [NTa] (2.4.2). Let E be an 

elliptic curve over Q with a Q-rat ional  point O, and C = E \ {O}. Then  we 

can regard C as tile configuration space E (2) of ordered two points on E divided 
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by the translation action of E on it: C ~- E(2)/E.  More generally, C (') can be 

regarded as E("+I) /E via 

(3.1.1) 
E(r+I) /E ~_ C (r) 

(Po, P1 . . . . .  P,) ~'~ ( 5  - Po . . . .  , P,. - Po). 

Since E(~+I)/E admits the action of ®r+l by permutation, also C(") has ~.r+l- 
action via the above isomorphism extending the original ~ -ac t ion ,  where ~ is 

identified with the stabilizer of the letter 0 in ®~+~ = ~({0, 1 . . . . .  r}). Since this 

action is defined over Q, the action of Gal((~/Q) commutes with this. 

3.2. The graded Lie algebra £~r) associated to the fundamental group of ~(r) is 

generated by "'lk~'(r)'*lk}'(r) (k : 1, . . . ,  r) and Zig) (j : O, 1 . . . .  . r; k = 1, . . . ,  r). We 
r .~(r)~ and 7(r) ~(r) put X}o) --__ __(~r\/_~k=l "g(r))"~i(O ) l k  = --(Ek----1 *lk / ~jO = ~Oj (j = 1, . . . ,  r). 

Then the Gr+l-action corresponding to the one introduced above is described 

as ~,(x[~ )) ,v(") ~(~1(; )) Y~(~) (") z (~) : : ~ ( z ] ~  ) = ~u),~(~) " 1,o(k)' 1,o(k) and (a E Gr+l = 

@({0, 1 . . . . .  r})). We denote by/)[~)+ the subalgebra of / )~)  consisting of all W- 

normalized derivations which are ®~+l-invariant (not only ®~-invariant) modulo 

inner derivations. We want to know the structure of 7)[ ~)+. 

The Lie algebra l)~ ")+ consists of the even degree components PROPOSITION 3.3: 

of D~ r), that is, 

(m: odd). 

Proof: W h e n  r = 1, ~ 2  = (~ = (0 1)1 ac ts  on ~ 1 )  as ~ ( X } ' ? )  = - X P , ) , ~ ( ~ ] T )  
= -Y(?) and a(Zo(11 )) = Zo(ll ). Hence a acts as (-1)m-multiplication on grm £~1), 
so on grm T)~ r). 

When r > 1, since Gr+l is generated by Gr and G = (0 1), we must consider 

only the invariance by a for an element of/)~"). The composite 

~b := t/,~ 2) o . - . o  g,~(r): gr "~ D{ ~) --+ gr "~ D{ 1) 

commutes with the action of a. Hence we have ~b o a = a o ,/, = ( -1) 'hb.  Since 

~/, is injective, the action of G on grm/)~r) is (-1)m-multiplication. | 

3.4. We shall consider the action of GL(2, Q) on £~r) and/)~r)+ tensored with 

r(") = £~r) Oz Q and ~I.Q Oz Q. The graded Lie algebra ,.q.Q Q. Let ~I,Q T)(r)+ = ~)~r)+ f,(r) 

has natural GL(2, Q)-action as automorphisms ([NTs, NTaU, NTa, T]). This 
~(r)+ by conjugation. Hence its Lie algebra induces the action of GL(2, Q) on --I,Q 
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r(r)  ~(r)+ g[(2, Q) acts on "~I,Q and on --1,Q ~s derivations. Here we discuss this action of 

f ( r )  and ~(~)+ 9[(2, Q) on "m,Q -1 ,q  mainly based on IT]. 

3.5. Let V = Q+2 = Qx ~ Qy be the standard representation of s[(2, Q). To 

write it down explicitly, put 

e =  0 ' f =  1 0 - ' 

They form a Q-linear basis of s[(2, Q) and h generates a Cartan subalgebra. 

When we identify a root, an: h ~-+ n with n, e (resp. f )  is of weight 2 (resp. -2 ) .  

The action of ~i(2, Q) on V is defined to be 

(3.5.1) e: h: and f :  y~-~x, y~--~ - y ,  y~+O. 

Then V is an irreducible s[(2, Q)-module of dimension 2 with a maximal vector 

3.6. By applying the Witt  formula together with 9[(2, Q)-action, we obtain 

m ~,(1)+ 9[(2, Q)-modules. In the table we the irreducible decomposition of gr t-l, o as 

denote the symmetric tensor product Sym n V by [n], which is the unique (n + 1)- 

dimensional irreducible representation of 51(2, Q). On the s[(2, Q)-irreducible 

components [n] in __m~(~')+ g[(2,Q) acts as (det -~-~) c:)[n]. But we have no ~;1 r~l, Q , 
m ~r~(2)+ explicit formula on the irreducible decomposition oI gr ~'I,Q - In fact we do not 

know even dimensions of them as Q-linear spaces in an explicit form. We, how- 
~(2)+ ever, determined the 9[(2, Q)-irreducible decomposition of grm ~I,Q for m < 12 

by checking the condition for derivations in gr "~/)~l)+ to be extended in grm :D~ 2)+ 

using computers, actually. 

3.7. When g = 1, the first indices of X's  and Y's are always 1. In this section 
y(r) V(r) ~(r) -(r) f(r)  X j  , } j  . we denote --lj  , ~ U simply by The action of s[(2, Q) on ~I,Q is given 

by 

(3.7.1) e: ~_~ "'Jr!r)' h: ~-~ -l ')(r), and f :  7) ('`) ~+ 0, 
7(r) Z(~) ~(r) 
~ j k  F-~ O, j k  e-~ 0, ~ j k  e-~ 0. 

~(,-) 
The action of 5[(2, Q) on ~ l , q  is given by g.D = g o D - D o g  for g E s[(2, Q), D E 
)(,') 
1,Q" These actions commute with p}r) ,¢r(,~-). Hence it. suffices to consider which 

7)(1) ~(,') irreducible colnponents of " t ,Q are included in the image of ~l ,q"  Moreover, 
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~(t )  it suffices to examine whether a maximal vector in each component  of ~I .Q can 

~(~) Maximal vectors are characterized by the property to be be extended to ~I,Q" 

killed by e. 

3.8. Each derivation D (1) E ~)~1)+ is of the form 

(3.8.1) { x~l) ~-+ S~l )=  S(X~ 1),Y(,)), 
n(1): ](%(1) e_ ). T(1) T(X~I), y1(1)), 

Z(11 ) ~"+0 

with [S}I),Ya(1) ] + [X~I),T} ')] = 0. Here N and 7- are Lie polynomials of two 

variables. 

PROPOSITION 3.9: 

(1) A derivation DO) of the above form belongs to the image of f,~2): /)~2)+ --+ 

"D~ 1)+ if and only if there exists an element U C £~2)o satisfying the following 

relations. 

(3.9.1) 

(3.9.2) 

(3.9.3) 

(3.9.4) 

(3.9.5) 

u + ~(u)  = 0 (~ = (1 2)), 

rz (~) T(u)] = o (T = (0 2)), [Zo(~ ), U] "-~'-I 12' 
[s (~) x'(2)~ [x~ ~), ~(s~))] [x~ ~), [x~ ~), u]], 1 ," 2 Jq- 
[T~2), y(2)] + []~(2), a(T~2))] = [}~2), []1(2), U]], 

[s~), ~% (~)] + [x~), ~(r~))] = [Zo% u] + [x~), [z~), u]]. 

(2) 

Here we put S~ 2) := iO)(S~ ')) = $(X12),}'1(2) ) and T~ 2) :-- i(')(T~ ')) = 

Assume that  D (1) is a maxmal  vector of weight w (i.e., e .D  (1) -- 0, h.D (1) = 

wDO)). 

(a) I f  w = 0, then we need to examine only (3.9.1), (3.9.2) and (3.9.5). 

(b) I f  w ¢ 0, then U must be 0 and D (1) belongs to the image of g,~2) if  

and only if 

(3.9.6) 
(3.9.7) 

[T~2) }~2)] + [I~(2), a(T~2))] = 0, 

[S~ 2>, ~%(2)1 + [X} ~),.(T:2))] = 0 

Proof'. (1) Assume that  g,~2)(D(2)) = D (1). Then by Lemma 2.1, D (2) is of the 
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following form: 

X ~ 2 )  l 

X~2)~ 

> s i2 )=  s(xi2) ~i('n), 
> T}2)= T(XI2),~i~(~-)), 

_ = rTr(':') x~2)], > 4 ~) s(x~),~~ ~)) + ~o , ,  
> r.]") : r(Xi~), h (~)) + [U~?, '~,"(~)<,, 

z(2) ru(2) 7(2)1 
12 ~ [ 12 ~ t 2  J '  

z(2) rrr(2) zo(2) 01 i > [ ~ 0 1  ' ] '  

Zo? o, 

, r ( ~ )  _ ~(u}~)). where UO(21 ), ~12rr(2)belong to £~ 2)° and satisfy the condition [/0(21 ) = ~,2 

Consider r-invariance nlodulo inner derivations. Since r = (02)  fixes W~ 2) = 
Zo (2)z-~(2) and W2 (2) 7(2) roD(2)o r_ l  is W-normalized. Hence woD(2)or -1 1 ~ 1 2  = ~ 0 2  ~ 

D (2). Since r o D (2) o r - l ( Z [ ~  )) : [Tit ' ,r[(2)\05 )' Zq2r'(2)l]' we have ~ITT(2)2 : T(UO(21 ))" 
rr(2) Therefore, if we put U := ~ 01 ,we have ~r(U) = a ( U ~  )) -~n(2)17 = - U .  The other 

relations are necessary for D (2) to satisfy the relations rY(2) ¥'(2)1- 7 ( 2 ) .  7(2) _ k"~l ~ 1  J ~ 1 2  ~ 0 1  - -  

0, [XI ~), X~ 2)] = 0, [}~(2)}.~(2)] = 0 and [X~ 2), })(2)] = ~127(2) in £~2), respectively. 

Conversely, assume tha t  there exists U E £[2)o satisfying the above relations. 
Then, since 7(2) r(2)° ~01 + Z}~ ) + Zo(~ ) is central  in ~., , we have 

[-(~> ~ ( u ) ]  [z{~ ~, u] + <~o,, z , 2 ,  U - r(U) + = r7(2) U] + a([Z}~ ), r(U)]) 

= [-Z(o~ ), u] - .([Z~o~, ), u]) 
= -[zo(~ ), u + ~(u)] = 0. 

Hence it follows tha t  U = v(U) - at(U). Put  ~n (2)05 := U, U}~ ) := r(U) and define 
D (2) by the above assignment. The relations in the assumption assure tha t  D (z) 

satisfies all of the defining relations of £~2). 

(2) Since e .  D (n = 0, we have e .  S~ 1) = 0, e .  T~ 1) = S~ 1). By operating e on 

both sides of (3.9.5), we obtain (3.9.3). Hence we can omit this. 

(a) If w -- 0, then f .  D (l) = 0 and we have f -  r~ 1) = 0, f -  S~ 1) = T[n .  By 

operating f on both sides of (3.9.5), we obtain (3.9.4). Hence we can omit this, 

too. 

(b) Since h kills £~2)o, wD(2)(Z(2t) ) = h. D(2)(ZO(~ )) = 0. Hence U~  ) must be 

0 if w ~4 0. The rest is obvious. | 

Remark 3.10: By Lemma 1.15, £~2)o can be identified with ~(4) ~ ~'2 up to one- 
7(2)\ In this sense we write U lJ(7(2) 7(~)~ dimensional center (Zo(21) + Zo(~ ) + ~ 1 2 / .  = ~t~o2 , ~ol J. 
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Then (3.9.1) and (3.9.2) are written as 

(3.10.1) v,H(7(2)~o2, Zo(~ ) ) +U(Z(o~ ) , Zo(~ ) ) = 0 ,  
11[7(2) 7(2)~1 r7(2)  11[~(2) 7(2)~1 = 0. (3.10.2) [Zo(]),v'\~o2 ,~Ol JJ + t~12 ,'~ w"o2 , " l z  ,J 

From this, it follows that U satisfies 2-cycle relation (A.5.2) and 3-cycle relations 
(A.5.3). Therefore, if we regard D(2)[z:~2)o as a derivation of ~(4), it gives an 

element of/9o (4). 

3.11. By examining the condition of the above proposition, we determined 
m ~r~(2)+ which irreducible components of gr "~ ~!1)..~ are in the image of gr ~I,Q for 

m_<12. 

Table 1. The multiplicities of the ~l(2, Q)-irreducible decomposition 
~(r)+ (r = 1, 2) of grm ~I,Q 

m 

2 
4 
6 
8 

10 
12 

m 

2 
4 
6 
8 

10 
12 

o[o] 
112] +o[o] 
1[4]-t-o[2] 
116] +0[4] 
118] +116] 

111o] +118] 

m -r~(1)+ 
gr r,1, Q 

+11o] 
+2[2] +o[o] 
+3[4] +112] +3[0] 
+5[6] +4[4] +8[2] 

o[o] 
112] +o[o] 
114] +0[2] 
116] +0[4] 
118] +116] 

111o]-t-118] 

~(2)+ 
g r  m L-'I, Q 

+110] 
+112] +0[0] 

+114] +112] +1101 
+2[6] +2[4] +2[2] 

+o[o] 

+o[o1 

The multiplicities of the underlined terms are truely less than those of L~I, o. 

This shows the non-surjectivity of :D~ 2) -+ D~ 1). This is the only known example 
of non-surjectivity of this kind of homomorphism other than/3(05) -+/90 (4), which 

is shown by Drinfeld and Ihara-Terada (see [I3]). 

3.12. Let ~c be the Galois Lie algebra attached to 7r pr°-t(C). Then ~c Qz~ Qt 
~(r)+ is included in ~I,Q ®O Qt. If E has no complex multiplication, the (abelian) 

l-adic representation PE: GO -+ GL(2, Zt) has an open image (Serre [Se]). The 
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image pE(GQ) acts on ~C by conjugation. This induces the action of g[(2, Zt) 

on Go' as derivations. When both are tensored with Q/, the action of Ill(2, Zt) 
,D(r)+ on Gc and the action of g[(2, Q) on ~I,Q are equivariant, that is, the inclusion 

T} (r)+ (7)Q QI  is gI(2, Qt)-equivariant. Hence the determination of Gc ~2)z~ Qt ~-+ ~ I , Q  
~-,(r)+ _ the Galois image in tq ,Q ~.)O QI means the determination of ill(2, Qt)-irreducible 

components containing the Galois images. 

We know non-trivial elements in .Go confing from two different origins. 

3.13. By the theory of universal monodromy representation, we have a canon- 

ical surjeetion 

(3.13.1) ¢c :  Go' ~ cJl,l = Go,3 = Gp,\(O,l,~} 

(see also the next section). Oda [O] showed that SL(2, Zl) acts trivially on 

the irreducible components which survives the above surjeetion. Since Go,3 (2~z~ 

Ql has one generator in each odd degree greater than or equal to 3, ~c  has 

one [@component in each degree 4m + 2 (m > 1). In degree 6 and 10, since 

the multiplicity of [0J-component in gr "~ ~(2)+ is one (and since the images of ~ ' l  ,Q 
the generators by the derivation in this component are determined by actual 

computation), this property characterizes the Galois image component coming 
~(l)+ 

from this nature in gr "~ ~ l,O • We denote by D ° one of the non-vanishing 

elements under g'c- 

3.14. By considering the action of G O on the meta-abelian quotient 

7rpr°-~(C)/~r°-~(C) '', Nakamura IN1] showed that for a generic elliptic curve 

E there are non-trivial Galois images in the highest weight component [ m -  2] in 

grm 79(r)+ for each even m greater than or equal to 4. Because the multiplicity of I,Q 
.D(i)+ 

[ m  - 2] in gr "~ . 1,Q is one for all even m > 4, the Galois image component com- 

ing fl'om this nature is characterized by this property in gr m 79 (l)+ A maximal I , Q "  

vector D.~ = D~ ) is given by 

XI l) > (Ad x~(1)~mv(1) 
I " ~ 1  ) ~ 1 

~-1  
(3.14.1) D~): y1 (1) , > ~ (-1)r[(AdX~l))ryl(1)(AdX}l))m-l-ryl(1)],  

z ' :0 
7 (  1 ) ~0~ F---+ 0. 

PROPOSITION 3 . 1 5 :  

(1) For a generic olliptic curve E, we have 

grm :D(2)+ GO Ql -~ gr "~ Gc C2~z, Qz 1,Q 
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when  m <<_ 12. 
(2) For a n y  r >_ 3, 

when  m <_ 12. 

grm 7)~2)+ = grm 7)~r)+ 

m .r~(2)+ Proof." It suffices to show that all the irreducible components of gr r~l, Q are 

generated by two kinds of Galois image components mentioned above. In Table 2 
.n(2)+ (m < 12). we list maximal vectors of all the irreducible components of gr m '~I,Q 

By actual computation we can confirm that all of them are non-zero and linearly 
independent. | 

Table 2. Maximal vectors of grm 7) (2)+ 1,Q 

Degree 
m - - 4  

6 

Weight 
w ----2 

4 
0 

8 6 
2 

10 8 
6 
4 
2 
0 

12 

A maximal vector 

10 
8 
6 

0 4  

D6 
0 o 

Ds 
[D4, f "  04] 
Ds 
[D4, 06] 
[04, f .  D6] - 2If .  D4, D6] 
[D4, f .  f .  06] - 3[f .  04, f -  06] + 6[f.  f -  04, D6] 
D°o 
O12 
[D4, Ds] 
[04, f"  Ds] - 3[f" D4, Ds] 
[06, f" o61 
[04, f .  f" Ds] - 5[f. D4, f .  Ds] + 15[f. f .  D4, Ds] 
[D4, [04, f"  04]] 
2106, f .  f .  f .  06] - 3 [ f . D 6 , f .  f .  06] 
[04, [D4, f "  f"  04]] -- I f -  04 ,  [04, f .  04]] 

Note that our stability theorem assures that 7)~3)+ = D~r)+ for any r _> 4. 

4. Further discussion 

4.1. For any curve C of type (g, n), the Galois Lie algebra ~c has a quotient 

G�.n which depends only on (g, n), owing to the theory of universal monodromy 
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representations (Oda [0]). Moreover, 69.- does not depend even on (g, n) (Oda's 
conjecture, proved by IN2, NTaU, IN, M]). Hence we always have a natural 
surjeetion 

(4.1.1) '~/'c: g c '  ) gg,n  = g0,3 = gPl\{0,1,c,c)}. 

Define a subalgebra/)(9~)0 of/)(~) by 

(4.1.2) /)(gr)o = {D •/)(9")1 DIt;~)o = 0}. 

r<)O /)(9,.)0 is a Lie ideal of/)~") Consider a surjection Since D •/)(9") stabilizes ,.,g , 
(r) (r)0 /)(gr) _+ /)9 /7)9 obtained by restricting a derivation on L:~ ')°. Matsumoto's 

(r) (r)0 result [M] shows that the composite 6c  '-+ /)(9~) --+/)9 //)g factors through 
~'c- Compiling these facts, we obtain the following diagram: 

(4.1.3) Gcc " ~9~(a/r ,/)(92)c ,/)(91) 

1 1 l l 
GgA( > /)g(3)/7)9(31°( ) /)g(2) //)g(2)0 > 0 

~0,3( > /)~5)( > /)~4)( > Out b )9(4) 

Here, the homomorphisms (r) (r)o /)g /7)9 _+ Out b p(,.+2) are the injections obtained 
by the identification in Lemma 1.15, whose images are included in/)O(~+2) when 
r _> 3 by "automatic symmetry" (Proposition 1.13). When g = 1, the image of 
D~ 2)+ is included in/)(04) because of G2+l-symmetricity. 

Concerning the above diagram (4.1.3), we want to pose the following questions 
4.2 and 4.3 

4.2. Is/)(3) -~/)(2) SURJECTIVE? This inquires whether r = 3 is best possible 
or not. in our theorem. As seen in the last section,/)~2)+ --+/)~1)+ is not  surjective, 
and gr'~/)~ 3)+ --+ gr m/)~2)+ is surjective for m _< 12 because the composite 
gr m GC ©zl Q~ -+ g r"  t/1,Q"-'(3)+ c,~:~ Qt -+ grm/)~2)+ ~*O Ql is surjective. The actual 

computation in the component of degree 14 seems very interesting and important 
for the following reasons. Suppose that /)(3) __+ /)(92) would be surjective. If 
Do C /)o (4) could be lifted to an element D (2) • /)(92) then Do must be lifted 
to an element in /)('~), which is obtained by the image of the element in /)(93) 
extending D (2). This means that the 5-cycle relation (A.8.1), which distinguishes 
/)(o 5) from/)O(4), could be recovered from the extendability from/);4) to/)(92). This 
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computation is, however, very hard to carry out since the growth of degree seems 

to cause a serious increase of complexity of computation (maybe of exponential 

growth). 

4.3. Is :D~ 3) -+ :D(5) SURJECTIVE? Since 60,3 Oz, Ql is included in the image 

of/)(3)  QQ Ql in/)((5) ®z Ql, this question is related to the problem whether 

Qo,3 ®z, Qz coincides with/)~5) ®z Qt or not, which is regarded as a graded Lie 

algebra version of the open problem whether GQ coincides with the Grothendieck- 

Teichmfiller group GT or not. If we suppose Qo.3 Qz, QI = :D~ 5) ~)z Ql, it 

implies that ~D (3) --4 7)(5) is surjective. But this surjectivity does not seem easy 

as a problem on graded Lie algebras. On the other hand, if Go,3 Qz, Ql c 

/)(5) Qz Qt would hold, then we want to ask whether the obstruction comes from 

the extendability from 72(o 5) to :D(g 3). 

A p p e n d i x  A .  R e v i e w  o f  t h e  c a s e  o f  g e n u s  z e r o  

Here we shall recall Ihara's result [I3] on the stability properties of derivation 

algebras associated with a sphere (genus zero) braid group on n strings. We also 

add some new remarks. 

A.1. For n _> 4, let ~(~) be the graded Lie algebra over Z defined by the 

following generators and relations: 
generators: x! n) ~j = xij ( i , j  = 1 . . . . .  n); 

relations: 

(A.1.1) 

(A.1.2) 

(A.1.3) 

xii = O, xij = xj~ ( l _ < i , j _ < n ) ,  

~ - ~ x ~ j = O  ( l < i < n ) ,  
j = l  

[xij,xkl] = 0 if { i , j }  N {k,/} --- 0. 

We denote the homogeneous component of ~(n) of degree m by grm ~(n). The 

symmetric group ®~ = ®({1 . . . .  ,n}) acts on ~(n) by o ' (x i j  ) ~-- Xa(i)a(j). 

Remark  A.2: In [I3], Ihara defined ~3(~) as a graded Lie algebra over Q. But, 

as is considered in [I4], it can be formulated over Z. Moreover, he discussed the 

relationship between a certain congruence property of stable derivations modulo 

irregular primes and arithmetic of cyclotomic fields. 

A.3. When n = 4, the defining relations imply that x := x12 = X34, y := X13 = 

X24, Z := X14 = X23 and x + y + z  = 0. Hence ~3 (4) is isomorphic to the free 

Lie algebra ~'2 of rank two and the action of G4 factors through its quotient 
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64 -+ 64/I':1 ~- 63 (where V4 = ((1 2)(3 4), (1 3)(2 4)) is the Klein's four group 

included in 64) as substitutions of x, y, z. 

A.4. For n _> 5, we have the "forgetting the n-th string" homomorphism 
_.(,0 a'}} ~-1) for 1 _< i , j  _< n 1 and x !n) k--} 0 p r  n : ~ ( n )  __+ ~ ( n - 1 )  defined by x i j  ~ +  - -  ' zn  

for 1 < i < n. 

A.5. A derivation D of 9~ (n) is said to be spec ia l  (or bra id- l ike)  if for each i, j 

(1 <_ i , j  <_ n) there exists some tij E ~13(n) such that D(xiy) = [tij,xij]. The set 

of all special derivations Der ~ ~(n) of ~00  forms a graded Lie algebra. All inner 

derivations are special and all of them form a homogeneous Lie ideal Int ~(n). The 

quotient Out ~ ~(n) := Der ~ ~ ( ~ ) / i n t ~ ( , 0  is called the algebra of special outer 

derivations. It admits a natural 6,~-aetion. We denote by /)(o n) the 6n-fixed 

subalgebra of Out ~ ~(,0.  Each class of/)~ ' )  is represented by a special derivation 

which is 6,~-invariant modulo inner derivations. We prefer considering suitable 

representatives to considering classes of derivations modulo inner derivations. 

To choose such representatives, we introduce a system of elements of ~(n) for 

normalization. For i = 2 , . . .  , ~ -  1, put Yi = Yi : ~ -  E j = I  x i j  = - -  E j = i + I  'lj " 

A special derivation D of ~(n) is said to be y-normalized if D(yi) = 0 for i = 

2 . . . . .  n - 1 .  Then each class of Out ~ ~I3 ('~) of degree greater than one is represented 

by a unique y-normalized special derivation, that is, there exists a unique element 

f = f (x ,  y) E 9 (4) -~ .P o, such that it is represented by the derivation Df  = D~ 4) 

defined to be 

(A.5.1) Dr(x)  = 0, Dr(Y) = [y,f(x,y)] 

([I3] Proposition 1). Conversely, Df  defined as above represents a class in I)(o 4) 

if and only if f satisfies 

(A.5.2) 

(A.5.3) 

f ( x ,  y) + f (y ,  x) = 0, 

[y, f (x ,  y)] + [z, f ( x ,  z)] = 0. 

Moreover, (A.5.2) and (A.5.3) imply 

(A.5.4) f (x ,  y) + f (y ,  z) + f ( z ,  x) = 0 

([13] Proposition 2). 

A.6. Since a special derivation stabilizes the kernel of pr n, pr n induces a homo- 
morphism ~(,0: Der b q3(n) _+ Der ~ q3(,~-l) and ~/,(n): Out ~ q3(,~) _+ Out ~ ~3(~-1). 

If we identify ®n-1 with the stabilizer of the index n in ®n, these morphisms 
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are ®n_l-equivariant. Hence, by restricting .~(n) on the ®~-fixed part ~(n), we 

have 

(A.6.1)  2-11. 

THEOREM A.7 (Ihara [I2]): For n _> 5 (that is, for all cases) 

(,(n): Out ~ ~3(n) __~ Out b ~3(n--1) 

is injective. 

The following theorem is the main result of Ihara [I3], which is used in the 

proof of the main result of this paper at the most crucial point. 

THEOREM A.8 (Ihara [I3]): 
(1) The c/ass {0  (4) } belongs to the image of~/,(5): 7) (5) --+ ~)(0 4) if  and only i f f  

satisfies the following 5-cycle relation in 9 (5), 

(A.8.1) 

f (Xl2 ,  X23) -1- I(X34, X45 ) -t- f (x51 ,  X12) "~ I(X23, X34) Ar 1(X45, 3'51) = 0. 

(2) For n >_ 6 (that is, except for the first stage), 

is surjeetive (hence bijective). 

Remark A.9: Here we shall make some remarks. The first one is a relation be- 

tween the ®n-symmetricity of outer special derivations and the injectivity of ~(n). 

Theorem A.7 asserts that ~(~) is injective even not restricted on the @n-fixed 

part. This leads us to the automatic symmetricity of special outer derivations. 

PROPOSITION A.10: 

(1) Identify ®~_ 1 with the stabilizer of the index n in ®n. For {D} E Out b ~(n) 

and a E ~,~-1, if f ' (n)({D}) is fixed by a, then {D} is fixed by a e ~n-1  C 

~n. 
(2) The alternating group 925 of degree 5 acts on Out b ~(a) trivially. 

(3) I f n  >_ 6, ®n acts on Out b g3 (n) trivially. Hence l)o (~) = Out b ~(n). 

Proof'. (1) Since ~/,(n) is ®n_l-equivariant under the above identification, if 
a(¢(n)({D})) = q,(n)({D}) for a C ~r -1 ,  then we have 

¢(n)({D}) = a({,(n)({D})) _- ~W)(a({D})). 



Vol. 136, 2 0 0 3  STABLE DERIVATION ALGEBRAS FOR HIGHER GENERA 249 

Hence {D} = a ({D})  follows from the injectivity of ¢,(n). 

(2) The  Klein's four group 174 acts trivially Oll p ( 4 )  so on Out  ~ 9 (4). Since 9,15 

is normally generated by 174 in G5, it acts on Out  b 9 (5) trivially by (1). 

(3) It suffices to show tha t  a t ransposi t ion a = (n - 1 n) acts on Out  ~ ~(~) 

trivially because it normally generates ®n in it. It follows fronl the injectivity of 
'(,(~) and ,~/,(n-1) and tha t  ~,(n--1) O ~,(n) _~ .(,(n--l) O .~/,(n) O O'. 

R e m a r k  A.11: Drinfel 'd [Dr] proved tha t  2-, 3-, and 5-cycle relations (A.5.2), 

(A.5.4) and (A.8.1) imply (A.5.3). We shall remark tha t  if the characteristic of the 

coefficient ring is ilot zero, this inlplication fails. For example,  f = [x, [x, [x, y]]] 

- [ y ,  [x, [x, y]]] + [y, [y, [x, y]]] satisfies (A.5.2), (A.5.4) and (A.8.1) modulo 5, but  

does not satisfy (A.5.3) modulo 5. 

R e m a r k  A.12: Although it is not introduced explicitly in Ihara  [I3], it seems 

useful for understanding the contents of the paper  to consider the "duplicating 

the ( n -  1)-th string" homonlorphisnl  

(A.12.1) , ,~_,:  ~ ( n - l )  ) Cv(n  ) (3 ,n_ l ,n ) / ( i rn_ l ,n )  

I:}; - l )  , );Fij 1110(1 (3" .... 1,,,) (1 _< i , j  _< n - 1). 

For m > 1 it gives a injective homomorphism gr "~ ~(n-1)  __+ grm ~(n),  which is a 
section of pr n : gr m ~(")  --+ grm q3 ( n - 0  and is characterized as the unique section 
whose image is contained in the centralizer C~(,~) (x,,-1,,,) of x,~_,,,, in ~(n) .  
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